

CDCL3000C0-0002R7STB

ULTRACAPACITOR CELL

SERIES

CDCL ULTRACAPACITOR CELL

Rev	Date	Revision of historical records
V2019-1	24-10-19	The First Release
V2020-1	14-5-20	Version Update

SCOPE

These are the specifications of SPSCAP (Electric Double Layer Capacitor) which you are using, please review this document and approve it.

FEATURES

Low ESR & High Power Density

Over 1,000,000 duty cycles

Threaded connection

APPLICATIONS

EV/HEV

Hybrid driven trains

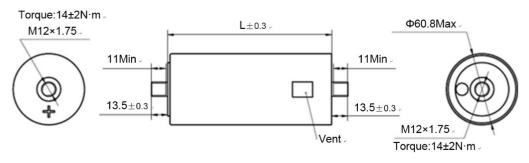
Mass transportation braking energy recovery system

Heavy duty machinery

Locomotive engine start system

Document number: DT14-08-201904-E Rev. & Date: V2020-1 2020.05.14

2.7V 3000F CDCL-STB


CONSTRUCTION AND DIMENSIONS

1) Construction

Inside structure: fold anode and cathode electrode with separator

Outer structure: aluminum case, insulating sleeve

2) Dimensions

DADT MUMBED	DIMENSION(mm)	
PART NUMBER	L	
CDCL2000C0-0002R7STB	138.0	

PART NUMBER NAMING SYSTEM									
	CDCL	3000	3000 C 0		0002	R	7	STB	
Pro	oduct Series	Nomir	nal Capacitance (F)		Rated Voltage (V)		V) Ter	Terminal Design	
С	Cell	3000	3000		0002	2	CT.	Threaded	
D	Electric double layer	С	Decimal	Dash	R	Decim	ST	connection	
С	Cylindrical	0	0.0		7	0.7	В	Improved Design	
L	Large	U	0.0				В		

Document number: DT14-08-201904-E 2.7V 3000F CDCL-STB Rev. & Date: V2020-1 2020.05.14

GENERAL CHARACTERISTICS	
Items	Specification
Rated Voltage (V DC)	2.7
Surge Voltage (V DC)	2.85
Operating Temp. (°C)	-40 ∼ +65
Rated Capacitance (F)	3000
Capacitance Tolerance	0% ~ 20%
ESR Max. (AC@1KHz, mΩ)	0.22
ESR Max. (DC, $m\Omega$)	0.29
Maximum Continuous Current (ΔT=15°C, A)	129
Maximum Continuous Current (ΔT=40°C, A)	211
Maximum Peak Current (A) (1s)	2166
Max.LC (Room Temp. after 72hrs, mA)	5.2
Typical Thermal Resistance (R _{th} , Housing, °C/W)	3.1
Typical Thermal Capacitance (C _{th} , J/°C)	645
Weight (g)	548
Energy Stored (Wh)	3.04

RELIABILITY SPECIFICATIONS

ITEM		SPECIFICATION		CONDITION	
Temp. Characteristics	Capacitance	Ctor 1	Change within 5% of Initial Value		
	ESR	Step. 1	Change within 50% of rated value	Step 1:+25±2°C, 1h Step 2:+65±2°C, 1h	
	Capacitance	C 1 0	Change within 5% of Initial Value		
	ESR	Step. 2	Change within 50% of rated value		
	Capacitance	C 1 0	Change within 5% of Initial Value	Step 3: −25±2°C, 1h	
	ESR	Step. 3	Change within 50% of rated value	Step 4: -40±2°C, 1h	
	Capacitance		Change within 5% of Initial Value		
	ESR	Step. 4	Change within 50% of rated value		
Vibration Test	Capacitance	Initial Value			
	ESR	Initial Value		ISO16750-3 Table 14	
	Appearance	Not Mark	ked Defect		
Thermal Cycle	Capacitance	Initial Value		Temp.: -40° C $\sim 65^{\circ}$ C Cycle times: 6	
	ESR	Initial Va	lue	Test Time(One Cycle): -40°C 2hrs,	
	Appearance	Not Marked Defect		+65°C 2hrs, Temp change 2hrs	
	Capacitance	Change within 20% of Initial Value		Temp.: +40±2℃	
Humidity Test	ESR	Change w	vithin 100% of Initial Value	Humidity: 90-95%RH Test Time: 240±8hrs	
	Appearance	Not Marked Defect		lest Time: 240±8nrs	
	Capacitance	Change within 20% of Initial Value		Temp.: +65±2℃	
DC Life	ESR	Change within 100% of Initial Value		Voltage: 2.7V	
	Appearance	Not Marked Defect		Time: 1,500hrs	
Shelf Life	Capacitance	Change within 20% of Initial Value		Temp.: +70±2°C Time: 1,000hrs	
	ESR	Change within 100% of Initial Value			
	Appearance	Not Mark	ked Defect		
Cycle Life	Capacitance	Change w	vithin 20% of Initial Value	Taman 25 . 2°C	
	ESR	Change w	vithin 100% of Initial Value	Temp.: +25±2°C Cycles times: 1,000,000	
	Appearance	Not Mark	ked Defect		

MEASURING METHOD

- 1) Charge and Discharge procedure (Figure 1)
 - A) Charge the capacitor using constant current I to rated voltage V₀
 - B) Keep rated voltage 5 mins
 - C) Discharge the capacitor using constant current I to half rated voltage, record discharge time T₁ during voltage change from V₁to V₂
 - D) Rest 2-5s, record voltage change △V
 - E) Discharge it to a very low voltage around 0.01V
 - F) $V_1 = 85\% V_0 V_2 = 50\% V_0$

$$C = I \cdot T1/(V_1 - V_2)$$

C: Capacitance (F)

I: Constant Discharge Current (A)

Time (S)

V₁-V₂: Voltage Change (V)

DC ESR=
$$\Delta V/I$$

DC ESR: DC Equivalent Series Resistance (Ω)

ΔV: Voltage Change (V)

I: Constant Discharge Current (A)

Measure AC ESR using LCR meter

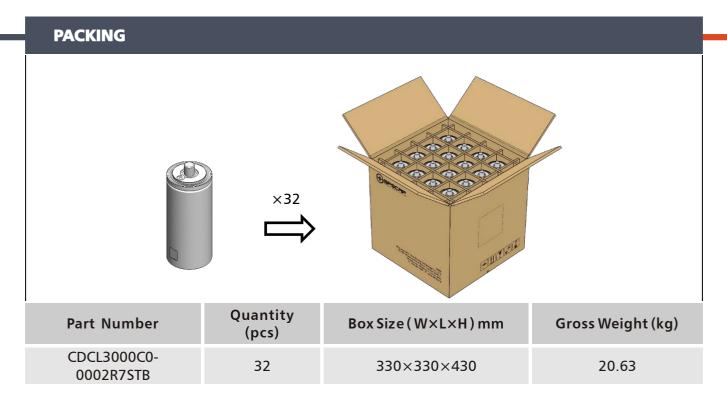
Frequency: 1KHz

Voltage: fully discharge



Figure 1

REMARK: SPSCAP EDLC SHOULD BE DISCHARGED WITH RESISTOR FOR AT LEAST 12 HOURS BEFORE MEASUREMENT OF CAPACITANCE OR ESR.



NOTES AND CAUTION

Please notice below points when you start use SPSCAP.

- 1) The SPSCAP gets polarity through aging/testing process before it is packed, so please mount it in accordance with its polarity to maintain the best condition;
- 2) Please only apply SPSCAP at rated voltage. If you apply more than rated voltage, capacitor will be damaged or broken due to electrolyte inside will be electrolyzed;
- 3) Ambient temperature greatly affects the lifetime of the capacitor, by reducing the temperature by 10°C, lifetime can be approximately doubled;
- 4) Storage: In long term storage, please store SPSCAP in following condition:
 - Temp.: 15 ~ 35°C
 - Humidity: 40 ~ 75 %RH
 - No-dust, non-acidic and/or non-alkaline atmosphere
 - Avoid direct sun light
- 5) Do not disassemble SPSCAP. It contains electrolyte;
- 6) Avoid serious mechanical impacts onto capacitor, such as force or twist capacitor;
- 7) Please contact us if you want to subject SPSCAP to severe vibrating conditions exceeding rated specification;
- 8) Please contact us if you want to connect a certain number of single capacitor to make a module;
- 9) Over-rated voltage may be applied to a single SPSCAP in series connection due to the deviation of capacitance and ESR of each SPSCAP. Please inform us if you are using SPSCAP in series connection and please design so as not to apply over-rated voltage to each capacitor, and use SPSCAP from same date code/lot.

All rights reserved. Design and specifications are subjected to change without notice.

NINGBO CRRC NEW ENERGY TECHNOLOGY CO.,LTD.

Add: No.199 Shidai Road, Wuxiang Town, Yinzhou District,

Ningbo,Zhejiang,China

Email: info@spscap.com Website: www.spscap.com

